Worst of Both Worlds: Biases Compound in Pre-trained Vision-and-Language Models

04/18/2021
by   Tejas Srinivasan, et al.
13

Numerous works have analyzed biases in vision and pre-trained language models individually - however, less attention has been paid to how these biases interact in multimodal settings. This work extends text-based bias analysis methods to investigate multimodal language models, and analyzes intra- and inter-modality associations and biases learned by these models. Specifically, we demonstrate that VL-BERT (Su et al., 2020) exhibits gender biases, often preferring to reinforce a stereotype over faithfully describing the visual scene. We demonstrate these findings on a controlled case-study and extend them for a larger set of stereotypically gendered entities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro