Using Machine Learning to Augment Coarse-Grid Computational Fluid Dynamics Simulations

09/30/2020
by   Jaideep Pathak, et al.
0

Simulation of turbulent flows at high Reynolds number is a computationally challenging task relevant to a large number of engineering and scientific applications in diverse fields such as climate science, aerodynamics, and combustion. Turbulent flows are typically modeled by the Navier-Stokes equations. Direct Numerical Simulation (DNS) of the Navier-Stokes equations with sufficient numerical resolution to capture all the relevant scales of the turbulent motions can be prohibitively expensive. Simulation at lower-resolution on a coarse-grid introduces significant errors. We introduce a machine learning (ML) technique based on a deep neural network architecture that corrects the numerical errors induced by a coarse-grid simulation of turbulent flows at high-Reynolds numbers, while simultaneously recovering an estimate of the high-resolution fields. Our proposed simulation strategy is a hybrid ML-PDE solver that is capable of obtaining a meaningful high-resolution solution trajectory while solving the system PDE at a lower resolution. The approach has the potential to dramatically reduce the expense of turbulent flow simulations. As a proof-of-concept, we demonstrate our ML-PDE strategy on a two-dimensional turbulent (Rayleigh Number Ra=10^9) Rayleigh-Bénard Convection (RBC) problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro