Two-phase Pseudo Label Densification for Self-training based Domain Adaptation

12/09/2020
by   Inkyu Shin, et al.
0

Recently, deep self-training approaches emerged as a powerful solution to the unsupervised domain adaptation. The self-training scheme involves iterative processing of target data; it generates target pseudo labels and retrains the network. However, since only the confident predictions are taken as pseudo labels, existing self-training approaches inevitably produce sparse pseudo labels in practice. We see this is critical because the resulting insufficient training-signals lead to a suboptimal, error-prone model. In order to tackle this problem, we propose a novel Two-phase Pseudo Label Densification framework, referred to as TPLD. In the first phase, we use sliding window voting to propagate the confident predictions, utilizing intrinsic spatial-correlations in the images. In the second phase, we perform a confidence-based easy-hard classification. For the easy samples, we now employ their full pseudo labels. For the hard ones, we instead adopt adversarial learning to enforce hard-to-easy feature alignment. To ease the training process and avoid noisy predictions, we introduce the bootstrapping mechanism to the original self-training loss. We show the proposed TPLD can be easily integrated into existing self-training based approaches and improves the performance significantly. Combined with the recently proposed CRST self-training framework, we achieve new state-of-the-art results on two standard UDA benchmarks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro