Training few-shot classification via the perspective of minibatch and pretraining

04/10/2020
by   Meiyu Huang, et al.
15

Few-shot classification is a challenging task which aims to formulate the ability of humans to learn concepts from limited prior data and has drawn considerable attention in machine learning. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained to learn the ability of handling classification tasks on extremely large or infinite episodes representing different classification task, each with a small labeled support set and its corresponding query set. In this work, we advance this few-shot classification paradigm by formulating it as a supervised classification learning problem. We further propose multi-episode and cross-way training techniques, which respectively correspond to the minibatch and pretraining in classification problems. Experimental results on a state-of-the-art few-shot classification method (prototypical networks) demonstrate that both the proposed training strategies can highly accelerate the training process without accuracy loss for varying few-shot classification problems on Omniglot and miniImageNet.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro