Top-down Discourse Parsing via Sequence Labelling

02/03/2021
by   Fajri Koto, et al.
5

We introduce a top-down approach to discourse parsing that is conceptually simpler than its predecessors (Kobayashi et al., 2020; Zhang et al., 2020). By framing the task as a sequence labelling problem where the goal is to iteratively segment a document into individual discourse units, we are able to eliminate the decoder and reduce the search space for splitting points. We explore both traditional recurrent models and modern pre-trained transformer models for the task, and additionally introduce a novel dynamic oracle for top-down parsing. Based on the Full metric, our proposed LSTM model sets a new state-of-the-art for RST parsing.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro