Tight Query Complexity Lower Bounds for PCA via Finite Sample Deformed Wigner Law

04/04/2018
by   Max Simchowitz, et al.
0

We prove a query complexity lower bound for approximating the top r dimensional eigenspace of a matrix. We consider an oracle model where, given a symmetric matrix M∈R^d × d, an algorithm Alg is allowed to make T exact queries of the form w^(i) = Mv^(i) for i in {1,...,T}, where v^(i) is drawn from a distribution which depends arbitrarily on the past queries and measurements {v^(j),w^(i)}_1 < j < i-1. We show that for every gap∈ (0,1/2], there exists a distribution over matrices M for which 1) gap_r(M) = Ω(gap) (where gap_r(M) is the normalized gap between the r and r+1-st largest-magnitude eigenvector of M), and 2) any algorithm Alg which takes fewer than const×r d/√(gap) queries fails (with overwhelming probability) to identity a matrix V∈R^d × r with orthonormal columns for which 〈V, MV〉> (1 - const×gap)∑_i=1^r λ_i(M). Our bound requires only that d is a small polynomial in 1/gap and r, and matches the upper bounds of Musco and Musco '15. Moreover, it establishes a strict separation between convex optimization and randomized, "strict-saddle" non-convex optimization of which PCA is a canonical example: in the former, first-order methods can have dimension-free iteration complexity, whereas in PCA, the iteration complexity of gradient-based methods must necessarily grow with the dimension.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro