The Polynomial Complexity of Vector Addition Systems with States

07/01/2019
by   Florian Zuleger, et al.
0

Vector addition systems are an important model in theoretical computer science and have been used in a variety of areas. In this paper, we consider vector addition systems with states over a parameterized initial configuration. For these systems, we are interested in the standard notion of computational complexity, i.e., we want to understand the length of the longest trace for a fixed vector addition system with states depending on the size of the initial configuration. We show that the asymptotic complexity of a given vector addition system with states is either Θ(N^k) for some computable integer k, where N is the size of the initial configuration, or at least exponential. We further show that k can be computed in polynomial time in the size of the considered vector addition system. Finally, we show that 1 < k < 2^n, where n is the dimension of the considered vector addition system.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro