The divergence-conforming immersed boundary method: Application to vesicle and capsule dynamics

01/22/2020
by   Hugo Casquero, et al.
0

We extend the recently introduced divergence-conforming immersed boundary (DCIB) method [1] to fluid-structure interaction (FSI) problems involving closed co-dimension one solids. We focus on capsules and vesicles, whose discretization is particularly challenging due to the higher-order derivatives that appear in their formulations. In two-dimensional settings, we employ cubic B-splines with periodic knot vectors to obtain discretizations of closed curves with C^2 inter-element continuity. In three-dimensional settings, we use analysis-suitable bi-cubic T-splines to obtain discretizations of closed surfaces with at least C^1 inter-element continuity. Large spurious changes of the fluid volume inside closed co-dimension one solids is a well-known issue for IB methods. The DCIB method results in volume changes orders of magnitude lower than conventional IB methods. This is a byproduct of discretizing the velocity-pressure pair with divergence-conforming B-splines, which lead to negligible incompressibility errors at the Eulerian level. The higher inter-element continuity of divergence-conforming B-splines is also crucial to avoid the quadrature/interpolation errors of IB methods becoming the dominant discretization error. Benchmark and application problems of vesicle and capsule dynamics are solved, including mesh-independence studies and comparisons with other numerical methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro