The DAG Visit approach for Pebbling and I/O Lower Bounds

10/04/2022
by   Gianfranco Bilardi, et al.
0

We introduce the notion of an r-visit of a Directed Acyclic Graph DAG G=(V,E), a sequence of the vertices of the DAG complying with a given rule r. A rule r specifies for each vertex v∈ V a family of r-enabling sets of (immediate) predecessors: before visiting v, at least one of its enabling sets must have been visited. Special cases are the r^(top)-rule (or, topological rule), for which the only enabling set is the set of all predecessors and the r^(sin)-rule (or, singleton rule), for which the enabling sets are the singletons containing exactly one predecessor. The r-boundary complexity of a DAG G, b_r(G), is the minimum integer b such that there is an r-visit where, at each stage, for at most b of the vertices yet to be visited an enabling set has already been visited. By a reformulation of known results, it is shown that the boundary complexity of a DAG G is a lower bound to the pebbling number of the reverse DAG, G^R. Several known pebbling lower bounds can be cast in terms of the r^(sin)-boundary complexity. A visit partition technique for I/O lower bounds, which generalizes the S-partition I/O technique introduced by Hong and Kung in their classic paper "I/O complexity: The Red-Blue pebble game". The visit partition approach yields tight I/O bounds for some DAGs for which the S-partition technique can only yield an Ω(1) lower bound.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro