TCN Mapping Optimization for Ultra-Low Power Time-Series Edge Inference

03/24/2022
by   Alessio Burrello, et al.
3

Temporal Convolutional Networks (TCNs) are emerging lightweight Deep Learning models for Time Series analysis. We introduce an automated exploration approach and a library of optimized kernels to map TCNs on Parallel Ultra-Low Power (PULP) microcontrollers. Our approach minimizes latency and energy by exploiting a layer tiling optimizer to jointly find the tiling dimensions and select among alternative implementations of the causal and dilated 1D-convolution operations at the core of TCNs. We benchmark our approach on a commercial PULP device, achieving up to 103X lower latency and 20.3X lower energy than the Cube-AI toolkit executed on the STM32L4 and from 2.9X to 26.6X lower energy compared to commercial closed-source and academic open-source approaches on the same hardware target.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro