Tag-less Back-Translation

12/22/2019
by   Idris Abdulmumin, et al.
0

An effective method to generate a large number of parallel sentences for training improved neural machine translation (NMT) systems is the use of back-translations of the target-side monolingual data. Tagging, or using gates, has been used to enable translation models to distinguish between synthetic and natural data. This improves standard back-translation and also enables the use of iterative back-translation on language pairs that underperformed using standard back-translation. This work presents a simplified approach of differentiating between the two data using pretraining and finetuning. The approach - tag-less back-translation - trains the model on the synthetic data and finetunes it on the natural data. Preliminary experiments have shown the approach to continuously outperform the tagging approach on low resource English-Vietnamese neural machine translation. While the need for tagging (noising) the dataset has been removed, the approach outperformed the tagged back-translation approach by an average of 0.4 BLEU.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro