Symmetric cooperative motion in one dimension

04/07/2022
by   Louigi Addario-Berry, et al.
0

We explore the relationship between recursive distributional equations and convergence results for finite difference schemes of parabolic partial differential equations (PDEs). We focus on a family of random processes called symmetric cooperative motions, which generalize the symmetric simple random walk and the symmetric hipster random walk introduced in [Addario-Berry, Cairns, Devroye, Kerriou and Mitchell, arXiv:1909.07367]. We obtain a distributional convergence result for symmetric cooperative motions and, along the way, obtain a novel proof of the Bernoulli central limit theorem. In addition, we prove a PDE result relating distributional solutions and viscosity solutions of the porous medium equation and the parabolic p-Laplace equation, respectively, in one dimension.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro