Structured Case-based Reasoning for Inference-time Adaptation of Text-to-SQL parsers

01/10/2023
by   Abhijeet Awasthi, et al.
0

Inference-time adaptation methods for semantic parsing are useful for leveraging examples from newly-observed domains without repeated fine-tuning. Existing approaches typically bias the decoder by simply concatenating input-output example pairs (cases) from the new domain at the encoder's input in a Seq-to-Seq model. Such methods cannot adequately leverage the structure of logical forms in the case examples. We propose StructCBR, a structured case-based reasoning approach, which leverages subtree-level similarity between logical forms of cases and candidate outputs, resulting in better decoder decisions. For the task of adapting Text-to-SQL models to unseen schemas, we show that exploiting case examples in a structured manner via StructCBR offers consistent performance improvements over prior inference-time adaptation methods across five different databases. To the best of our knowledge, we are the first to attempt inference-time adaptation of Text-to-SQL models, and harness trainable structured similarity between subqueries.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro