STAR: Boosting Low-Resource Event Extraction by Structure-to-Text Data Generation with Large Language Models

05/24/2023
by   Mingyu Derek Ma, et al.
0

Structure prediction tasks such as event extraction require an in-depth understanding of the output structure and sub-task dependencies, thus they still heavily rely on task-specific training data to obtain reasonable performance. Due to the high cost of human annotation, low-resource event extraction, which requires minimal human cost, is urgently needed in real-world information extraction applications. We propose to synthesize data instances given limited seed demonstrations to boost low-resource event extraction performance. We propose STAR, a structure-to-text data generation method that first generates complicated event structures (Y) and then generates input passages (X), all with Large Language Models. We design fine-grained step-by-step instructions and the error cases and quality issues identified through self-reflection can be self-refined. Our experiments indicate that data generated by STAR can significantly improve the low-resource event extraction performance and they are even more effective than human-curated data points in some cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro