Spatially Varying Anisotropy for Gaussian Random Fields in Three-Dimensional Space

01/03/2023
by   Martin Outzen Berild, et al.
0

Isotropic covariance structures can be unreasonable for phenomena in three-dimensional spaces such as the ocean. In the ocean, the variability of the response may vary with depth, and ocean currents may lead to spatially varying anisotropy. We construct a class of non-stationary anisotropic Gaussian random fields (GRFs) in three dimensions through stochastic partial differential equations (SPDEs) where computations are done using Gaussian Markov random field approximations. The approach is proven in a simulation study where the amount of data required to estimate these models is explored. Then, the method is applied to construct a GRF prior on an ocean mass outside Trondheim, Norway, based on simulations from the complex numerical ocean model SINMOD. This GRF prior is compared to a stationary anisotropic GRF using in-situ measurements collected with an autonomous underwater vehicle where our approach outperforms the stationary anisotropic GRF for real-time prediction of unobserved locations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro