Sparse Optimization on Measures with Over-parameterized Gradient Descent

07/24/2019
by   Lenaïc Chizat, et al.
0

Minimizing a convex function of a measure with a sparsity-inducing penalty is a typical problem arising, e.g., in sparse spikes deconvolution or two-layer neural networks training. We show that this problem can be solved by discretizing the measure and running non-convex gradient descent on the positions and weights of the particles. For measures on a d-dimensional manifold and under some non-degeneracy assumptions, this leads to a global optimization algorithm with a complexity scaling as (1/ϵ) in the desired accuracy ϵ, instead of ϵ^-d for convex methods. The key theoretical tools are a local convergence analysis in Wasserstein space and an analysis of a perturbed mirror descent in the space of measures. Our bounds involve quantities that are exponential in d which is unavoidable under our assumptions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro