Sparse arrays of signatures for online character recognition

08/01/2013
by   Benjamin Graham, et al.
0

In mathematics the signature of a path is a collection of iterated integrals, commonly used for solving differential equations. We show that the path signature, used as a set of features for consumption by a convolutional neural network (CNN), improves the accuracy of online character recognition---that is the task of reading characters represented as a collection of paths. Using datasets of letters, numbers, Assamese and Chinese characters, we show that the first, second, and even the third iterated integrals contain useful information for consumption by a CNN. On the CASIA-OLHWDB1.1 3755 Chinese character dataset, our approach gave a test error of 3.58 al.]. A CNN trained on the CASIA-OLHWDB1.0-1.2 datasets won the ICDAR2013 Online Isolated Chinese Character recognition competition. Computationally, we have developed a sparse CNN implementation that make it practical to train CNNs with many layers of max-pooling. Extending the MNIST dataset by translations, our sparse CNN gets a test error of 0.31

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro