Solving Billion-Scale Knapsack Problems

02/02/2020
by   Xingwen Zhang, et al.
0

Knapsack problems (KPs) are common in industry, but solving KPs is known to be NP-hard and has been tractable only at a relatively small scale. This paper examines KPs in a slightly generalized form and shows that they can be solved nearly optimally at scale via distributed algorithms. The proposed approach can be implemented fairly easily with off-the-shelf distributed computing frameworks (e.g. MPI, Hadoop, Spark). As an example, our implementation leads to one of the most efficient KP solvers known to date – capable to solve KPs at an unprecedented scale (e.g., KPs with 1 billion decision variables and 1 billion constraints can be solved within 1 hour). The system has been deployed to production and called on a daily basis, yielding significant business impacts at Ant Financial.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro