Semantic Segmentation with Reverse Attention

07/20/2017
by   Qin Huang, et al.
0

Recent development in fully convolutional neural network enables efficient end-to-end learning of semantic segmentation. Traditionally, the convolutional classifiers are taught to learn the representative semantic features of labeled semantic objects. In this work, we propose a reverse attention network (RAN) architecture that trains the network to capture the opposite concept (i.e., what are not associated with a target class) as well. The RAN is a three-branch network that performs the direct, reverse and reverse-attention learning processes simultaneously. Extensive experiments are conducted to show the effectiveness of the RAN in semantic segmentation. Being built upon the DeepLabv2-LargeFOV, the RAN achieves the state-of-the-art mIoU score (48.1 for the challenging PASCAL-Context dataset. Significant performance improvements are also observed for the PASCAL-VOC, Person-Part, NYUDv2 and ADE20K datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro