Self-Supervised Interactive Object Segmentation Through a Singulation-and-Grasping Approach

07/19/2022
by   Houjian Yu, et al.
16

Instance segmentation with unseen objects is a challenging problem in unstructured environments. To solve this problem, we propose a robot learning approach to actively interact with novel objects and collect each object's training label for further fine-tuning to improve the segmentation model performance, while avoiding the time-consuming process of manually labeling a dataset. The Singulation-and-Grasping (SaG) policy is trained through end-to-end reinforcement learning. Given a cluttered pile of objects, our approach chooses pushing and grasping motions to break the clutter and conducts object-agnostic grasping for which the SaG policy takes as input the visual observations and imperfect segmentation. We decompose the problem into three subtasks: (1) the object singulation subtask aims to separate the objects from each other, which creates more space that alleviates the difficulty of (2) the collision-free grasping subtask; (3) the mask generation subtask to obtain the self-labeled ground truth masks by using an optical flow-based binary classifier and motion cue post-processing for transfer learning. Our system achieves 70 interactive segmentation of our system achieves 87.8 precision for toy blocks, YCB objects in simulation and real-world novel objects, respectively, which outperforms several baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro