Second-best Beam-Alignment via Bayesian Multi-Armed Bandits

06/11/2019
by   Muddassar Hussain, et al.
0

Millimeter-wave (mm-wave) systems rely on narrow-beams to cope with the severe signal attenuation in the mm-wave frequency band. However, susceptibility to beam mis-alignment due to mobility or blockage requires the use of beam-alignment schemes, with huge cost in terms of overhead and use of system resources. In this paper, a beam-alignment scheme is proposed based on Bayesian multi-armed bandits, with the goal to maximize the alignment probability and the data-communication throughput. A Bayesian approach is proposed, by considering the state as a posterior distribution over angles of arrival (AoA) and of departure (AoD), given the history of feedback signaling and of beam pairs scanned by the base-station (BS) and the user-end (UE). A simplified sufficient statistics for optimal control is derived, in the form of preference of BS-UE beam pairs. By bounding a value function, the second-best preference policy is derived, which strikes an optimal balance between exploration and exploitation by selecting the beam pair with the current second-best preference. Through Monte-Carlo simulation with analog beamforming, the superior performance of the second-best preference policy is demonstrated in comparison to existing schemes based on first-best preference, linear Thompson sampling, and upper confidence bounds, with up to 7 improvements in alignment probability, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro