Satellite Image Based Cross-view Localization for Autonomous Vehicle

07/27/2022
by   Shan Wang, et al.
0

Existing spatial localization techniques for autonomous vehicles mostly use a pre-built 3D-HD map, often constructed using a survey-grade 3D mapping vehicle, which is not only expensive but also laborious. This paper shows that by using an off-the-shelf high-definition satellite image as a ready-to-use map, we are able to achieve cross-view vehicle localization up to a satisfactory accuracy, providing a cheaper and more practical way for localization. Although the idea of using satellite images for cross-view localization is not new, previous methods almost exclusively treat the task as image retrieval, namely matching a vehicle-captured ground-view image with the satellite image. This paper presents a novel cross-view localization method, which departs from the common wisdom of image retrieval. Specifically, our method develops (1) a Geometric-align Feature Extractor (GaFE) that leverages measured 3D points to bridge the geometric gap between ground view and overhead view, (2) a Pose Aware Branch (PAB) adopting a triplet loss to encourage pose-aware feature extracting, and (3) a Recursive Pose Refine Branch (RPRB) using the Levenberg-Marquardt (LM) algorithm to align the initial pose towards the true vehicle pose iteratively. Our method is validated on KITTI and Ford Multi-AV Seasonal datasets as ground view and Google Maps as the satellite view. The results demonstrate the superiority of our method in cross-view localization with spatial and angular errors within 1 meter and 2^∘, respectively. The code will be made publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro