Robust Classification using Hidden Markov Models and Mixtures of Normalizing Flows

02/15/2021
by   Anubhab Ghosh, et al.
0

We test the robustness of a maximum-likelihood (ML) based classifier where sequential data as observation is corrupted by noise. The hypothesis is that a generative model, that combines the state transitions of a hidden Markov model (HMM) and the neural network based probability distributions for the hidden states of the HMM, can provide a robust classification performance. The combined model is called normalizing-flow mixture model based HMM (NMM-HMM). It can be trained using a combination of expectation-maximization (EM) and backpropagation. We verify the improved robustness of NMM-HMM classifiers in an application to speech recognition.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro