Resolution-invariant Person Re-Identification

06/24/2019
by   Shunan Mao, et al.
2

Exploiting resolution invariant representation is critical for person Re-Identification (ReID) in real applications, where the resolutions of captured person images may vary dramatically. This paper learns person representations robust to resolution variance through jointly training a Foreground-Focus Super-Resolution (FFSR) module and a Resolution-Invariant Feature Extractor (RIFE) by end-to-end CNN learning. FFSR upscales the person foreground using a fully convolutional auto-encoder with skip connections learned with a foreground focus training loss. RIFE adopts two feature extraction streams weighted by a dual-attention block to learn features for low and high resolution images, respectively. These two complementary modules are jointly trained, leading to a strong resolution invariant representation. We evaluate our methods on five datasets containing person images at a large range of resolutions, where our methods show substantial superiority to existing solutions. For instance, we achieve Rank-1 accuracy of 36.4 CAVIAR and MLR-CUHK03, outperforming the state-of-the art by 2.9 respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro