Residual Expansion Algorithm: Fast and Effective Optimization for Nonconvex Least Squares Problems

05/26/2017
by   Daiki Ikami, et al.
0

We propose the residual expansion (RE) algorithm: a global (or near-global) optimization method for nonconvex least squares problems. Unlike most existing nonconvex optimization techniques, the RE algorithm is not based on either stochastic or multi-point searches; therefore, it can achieve fast global optimization. Moreover, the RE algorithm is easy to implement and successful in high-dimensional optimization. The RE algorithm exhibits excellent empirical performance in terms of k-means clustering, point-set registration, optimized product quantization, and blind image deblurring.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro