Recent Results on No-Free-Lunch Theorems for Optimization

03/31/2003
by   Christian Igel, et al.
0

The sharpened No-Free-Lunch-theorem (NFL-theorem) states that the performance of all optimization algorithms averaged over any finite set F of functions is equal if and only if F is closed under permutation (c.u.p.) and each target function in F is equally likely. In this paper, we first summarize some consequences of this theorem, which have been proven recently: The average number of evaluations needed to find a desirable (e.g., optimal) solution can be calculated; the number of subsets c.u.p. can be neglected compared to the overall number of possible subsets; and problem classes relevant in practice are not likely to be c.u.p. Second, as the main result, the NFL-theorem is extended. Necessary and sufficient conditions for NFL-results to hold are given for arbitrary, non-uniform distributions of target functions. This yields the most general NFL-theorem for optimization presented so far.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro