Rank Persistence: Assessing the Temporal Performance of Real-World Person Re-Identification

06/02/2017
by   Srikrishna Karanam, et al.
0

Designing useful person re-identification systems for real-world applications requires attention to operational aspects not typically considered in academic research. Here, we focus on the temporal aspect of re-identification; that is, instead of finding a match to a probe person of interest in a fixed candidate gallery, we consider the more realistic scenario in which the gallery is continuously populated by new candidates over a long time period. A key question of interest for an operator of such a system is: how long is a correct match to a probe likely to remain in a rank-k shortlist of possible candidates? We propose to distill this information into a Rank Persistence Curve (RPC), which allows different algorithms' temporal performance characteristics to be directly compared. We present examples to illustrate the RPC using a new long-term dataset with multiple candidate reappearances, and discuss considerations for future re-identification research that explicitly involves temporal aspects.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro