Quantized Neural Network Inference with Precision Batching

02/26/2020
by   Maximilian Lam, et al.
0

We present PrecisionBatching, a quantized inference algorithm for speeding up neural network execution on traditional hardware platforms at low bitwidths without the need for retraining or recalibration. PrecisionBatching decomposes a neural network into individual bitlayers and accumulates them using fast 1-bit operations while maintaining activations in full precision. PrecisionBatching not only facilitates quantized inference at low bitwidths (< 8 bits) without the need for retraining/recalibration, but also 1) enables traditional hardware platforms the ability to realize inference speedups at a finer granularity of quantization (e.g: 1-16 bit execution) and 2) allows accuracy and speedup tradeoffs at runtime by exposing the number of bitlayers to accumulate as a tunable parameter. Across a variety of applications (MNIST, language modeling, natural language inference) and neural network architectures (fully connected, RNN, LSTM), PrecisionBatching yields end-to-end speedups of over 8x on a GPU within a < 1 outperforming traditional 8-bit quantized inference by over 1.5x-2x at the same error tolerance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro