Prospective Beamforming Technologies for Ultra-Massive MIMO in Terahertz Communications: A Tutorial

07/07/2021
by   Boyu Ning, et al.
0

Terahertz (THz) communications with a frequency band 0.1-10 THz are envisioned as a promising solution to the future high-speed wireless communication. Although with tens of gigahertz available bandwidth, THz signals suffer from severe free-spreading loss and molecular-absorption loss, which limit the wireless transmission distance. To compensate the propagation loss, the ultra-massive multiple-input-multiple-output (UM-MIMO) can be applied to generate a high-gain directional beam by beamforming technologies. In this paper, a tutorial on the beamforming technologies for THz UM-MIMO systems is provided. Specifically, we first present the system model of THz UM-MIMO and identify its channel parameters and architecture types. Then, we illustrate the basic principles of beamforming via UM-MIMO and introduce the schemes of beam training and beamspace MIMO for THz communications. Moreover, the spatial-wideband effect and frequency-wideband effect in the THz beamforming are discussed. The joint beamforming technologies in the intelligent-reflecting-surface (IRS)-assisted THz UM-MIMO systems are introduced. Further, we present the corresponding fabrication techniques and illuminate the emerging applications benefiting from THz beamforming. Open challenges and future research directions on THz UM-MIMO systems are finally highlighted.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro