Properties of Position Matrices and Their Elections

03/05/2023
by   Niclas Boehmer, et al.
0

We study the properties of elections that have a given position matrix (in such elections each candidate is ranked on each position by a number of voters specified in the matrix). We show that counting elections that generate a given position matrix is #P-complete. Consequently, sampling such elections uniformly at random seems challenging and we propose a simpler algorithm, without hard guarantees. Next, we consider the problem of testing if a given matrix can be implemented by an election with a certain structure (such as single-peakedness or group-separability). Finally, we consider the problem of checking if a given position matrix can be implemented by an election with a Condorcet winner. We complement our theoretical findings with experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro