Project and Probe: Sample-Efficient Domain Adaptation by Interpolating Orthogonal Features

02/10/2023
by   Annie S. Chen, et al.
0

Conventional approaches to robustness try to learn a model based on causal features. However, identifying maximally robust or causal features may be difficult in some scenarios, and in others, non-causal "shortcut" features may actually be more predictive. We propose a lightweight, sample-efficient approach that learns a diverse set of features and adapts to a target distribution by interpolating these features with a small target dataset. Our approach, Project and Probe (Pro^2), first learns a linear projection that maps a pre-trained embedding onto orthogonal directions while being predictive of labels in the source dataset. The goal of this step is to learn a variety of predictive features, so that at least some of them remain useful after distribution shift. Pro^2 then learns a linear classifier on top of these projected features using a small target dataset. We theoretically show that Pro^2 learns a projection matrix that is optimal for classification in an information-theoretic sense, resulting in better generalization due to a favorable bias-variance tradeoff. Our experiments on four datasets, with multiple distribution shift settings for each, show that Pro^2 improves performance by 5-15 such as standard linear probing.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro