PPAC: A Versatile In-Memory Accelerator for Matrix-Vector-Product-Like Operations

07/19/2019
by   Oscar Castañeda, et al.
0

Processing in memory (PIM) moves computation into memories with the goal of improving throughput and energy-efficiency compared to traditional von Neumann-based architectures. Most existing PIM architectures are either general-purpose but only support atomistic operations, or are specialized to accelerate a single task. We propose the Parallel Processor in Associative Content-addressable memory (PPAC), a novel in-memory accelerator that supports a range of matrix-vector-product (MVP)-like operations that find use in traditional and emerging applications. PPAC is, for example, able to accelerate low-precision neural networks, exact/approximate hash lookups, cryptography, and forward error correction. The fully-digital nature of PPAC enables its implementation with standard-cell-based CMOS, which facilitates automated design and portability among technology nodes. To demonstrate the efficacy of PPAC, we provide post-layout implementation results in 28nm CMOS for different array sizes. A comparison with recent digital and mixed-signal PIM accelerators reveals that PPAC is competitive in terms of throughput and energy-efficiency, while accelerating a wide range of applications and simplifying development.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro