Pose Guided Multi-person Image Generation From Text

03/09/2022
by   Soon Yau Cheong, et al.
2

Transformers have recently been shown to generate high quality images from texts. However, existing methods struggle to create high fidelity full-body images, especially multiple people. A person's pose has a high degree of freedom that is difficult to describe using words only; this creates errors in the generated image, such as incorrect body proportions and pose. We propose a pose-guided text-to-image model, using pose as an additional input constraint. Using the proposed Keypoint Pose Encoding (KPE) to encode human pose into low dimensional representation, our model can generate novel multi-person images accurately representing the pose and text descriptions provided, with minimal errors. We demonstrate that KPE is invariant to changes in the target image domain and image resolution; we show results on the Deepfashion dataset and create a new multi-person Deepfashion dataset to demonstrate the multi-capabilities of our approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro