Polynomial-time Approximation Scheme for Minimum k-cut in Planar and Minor-free Graphs

11/09/2018
by   MohammadHossein Bateni, et al.
0

The k-cut problem asks, given a connected graph G and a positive integer k, to find a minimum-weight set of edges whose removal splits G into k connected components. We give the first polynomial-time algorithm with approximation factor 2-ϵ (with constant ϵ > 0) for the k-cut problem in planar and minor-free graphs. Applying more complex techniques, we further improve our method and give a polynomial-time approximation scheme for the k-cut problem in both planar and minor-free graphs. Despite persistent effort, to the best of our knowledge, this is the first improvement for the k-cut problem over standard approximation factor of 2 in any major class of graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro