Playing Catan with Cross-dimensional Neural Network

08/17/2020
by   Quentin Gendre, et al.
0

Catan is a strategic board game having interesting properties, including multi-player, imperfect information, stochastic, complex state space structure (hexagonal board where each vertex, edge and face has its own features, cards for each player, etc), and a large action space (including negotiation). Therefore, it is challenging to build AI agents by Reinforcement Learning (RL for short), without domain knowledge nor heuristics. In this paper, we introduce cross-dimensional neural networks to handle a mixture of information sources and a wide variety of outputs, and empirically demonstrate that the network dramatically improves RL in Catan. We also show that, for the first time, a RL agent can outperform jsettler, the best heuristic agent available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro