Physics-preserving IMPES based multiscale methods for immiscible two-phase flow in highly heterogeneous porous media

12/12/2022
by   Yiran Wang, et al.
0

In this paper, we propose a physics-preserving multiscale method to solve an immiscible two-phase flow problem, which is modeled as a coupling system consisting of Darcy's law and mass conservation equations. We use a new Physics-preserving IMplicit Pressure Explicit Saturation (P-IMPES) scheme in order to maintain the local conservation of mass for both phases. Besides, this scheme is unbiased and if the time step is smaller than a certain value, the saturation of both phases are bounds-preserving. When updating velocity, MGMsFEM serves as an efficient solver by computing the unknowns on a coarse grid. We follow the operation splitting techinque to deal with the two-phase flow. In particular, we use an upwind strategy to iterate the saturation explicitly and the MGMsFEM is utilized to compute velocity with a decoupled system on a coarse mesh. To show the efficiency and robustness of the proposed method, we design a set of interesting experiments. A rigorous analysis is also included to serve as a theoretical base of the method, which is well verified by the numerical results. Both simulations and analysis indicate that the method attains a good balance between accuracy and computation cost.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro