Partial Conditioning for Inferential Models

01/11/2023
by   Jiasen Yang, et al.
0

Inferential models have been proposed for valid and efficient prior-free probabilistic inference. As it gradually gained popularity, this theory is subject to further developments for practically challenging problems. This paper considers the many-normal-means problem with the means constrained to be in the neighborhood of each other. A new method, called partial conditioning, is proposed to generate valid and efficient marginal inference about the individual means. It is shown that the method outperforms both a fiducial-counterpart in terms of validity and a conservative-counterpart in terms of efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro