On transversality of bent hyperplane arrangements and the topological expressiveness of ReLU neural networks

08/20/2020
by   J. Elisenda Grigsby, et al.
0

Let F:R^n -> R be a feedforward ReLU neural network. It is well-known that for any choice of parameters, F is continuous and piecewise (affine) linear. We lay some foundations for a systematic investigation of how the architecture of F impacts the geometry and topology of its possible decision regions for binary classification tasks. Following the classical progression for smooth functions in differential topology, we first define the notion of a generic, transversal ReLU neural network and show that almost all ReLU networks are generic and transversal. We then define a partially-oriented linear 1-complex in the domain of F and identify properties of this complex that yield an obstruction to the existence of bounded connected components of a decision region. We use this obstruction to prove that a decision region of a generic, transversal ReLU network F: R^n -> R with a single hidden layer of dimension (n + 1) can have no more than one bounded connected component.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro