On the constructions of n-cycle permutations

07/29/2020
by   Yuting Chen, et al.
0

Any permutation polynomial is an n-cycle permutation. When n is a specific small positive integer, one can obtain efficient permutations, such as involutions, triple-cycle permutations and quadruple-cycle permutations. These permutations have important applications in cryptography and coding theory. Inspired by the AGW Criterion, we propose criteria for n-cycle permutations, which mainly are of the form x^rh(x^s). We then propose unified constructing methods including recursive ways and a cyclotomic way for n-cycle permutations of such form. We demonstrate our approaches by constructing three classes of explicit triple-cycle permutations with high index and two classes of n-cycle permutations with low index.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro