On overfitting and post-selection uncertainty assessments

12/06/2017
by   Liang Hong, et al.
0

In a regression context, when the relevant subset of explanatory variables is uncertain, it is common to use a data-driven model selection procedure. Classical linear model theory, applied naively to the selected sub-model, may not be valid because it ignores the selected sub-model's dependence on the data. We provide an explanation of this phenomenon, in terms of overfitting, for a class of model selection criteria.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro