Obfuscation via Information Density Estimation

10/17/2019
by   Hsiang Hsu, et al.
0

Identifying features that leak information about sensitive attributes is a key challenge in the design of information obfuscation mechanisms. In this paper, we propose a framework to identify information-leaking features via information density estimation. Here, features whose information densities exceed a pre-defined threshold are deemed information-leaking features. Once these features are identified, we sequentially pass them through a targeted obfuscation mechanism with a provable leakage guarantee in terms of E_γ-divergence. The core of this mechanism relies on a data-driven estimate of the trimmed information density for which we propose a novel estimator, named the trimmed information density estimator (TIDE). We then use TIDE to implement our mechanism on three real-world datasets. Our approach can be used as a data-driven pipeline for designing obfuscation mechanisms targeting specific features.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro