Nonreversible Markov chain Monte Carlo algorithm for efficient generation of Self-Avoiding Walks

07/24/2021
by   Hanqing Zhao, et al.
0

We introduce an efficient nonreversible Markov chain Monte Carlo algorithm to generate self-avoiding walks with a variable endpoint. In two dimensions, the new algorithm slightly outperforms the two-move nonreversible Berretti-Sokal algorithm introduced by H. Hu, X. Chen, and Y. Deng in <cit.>, while for three-dimensional walks, it is 3–5 times faster. The new algorithm introduces nonreversible Markov chains that obey global balance and allows for three types of elementary moves on the existing self-avoiding walk: shorten, extend or alter conformation without changing the walk's length.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro