Node Diversification in Complex Networks by Decentralized Coloring

11/27/2018
by   Richard Garcia-Lebron, et al.
0

We develop a decentralized coloring approach to diversify the nodes in a complex network. The key is the introduction of a local conflict index that measures the color conflicts arising at each node which can be efficiently computed using only local information. We demonstrate via both synthetic and real-world networks that the proposed approach significantly outperforms random coloring as measured by the size of the largest color-induced connected component. Interestingly, for scale-free networks further improvement of diversity can be achieved by tuning a degree-biasing weighting parameter in the local conflict index.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro