Natural Language Generation as Planning under Uncertainty Using Reinforcement Learning

06/15/2016
by   Verena Rieser, et al.
0

We present and evaluate a new model for Natural Language Generation (NLG) in Spoken Dialogue Systems, based on statistical planning, given noisy feedback from the current generation context (e.g. a user and a surface realiser). We study its use in a standard NLG problem: how to present information (in this case a set of search results) to users, given the complex trade- offs between utterance length, amount of information conveyed, and cognitive load. We set these trade-offs by analysing existing MATCH data. We then train a NLG pol- icy using Reinforcement Learning (RL), which adapts its behaviour to noisy feed- back from the current generation context. This policy is compared to several base- lines derived from previous work in this area. The learned policy significantly out- performs all the prior approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro