Multistage s-t Path: Confronting Similarity with Dissimilarity

02/18/2020
by   Till Fluschnik, et al.
0

Addressing a quest by Gupta et al. [ICALP'14], we provide a first, comprehensive study of finding a short s-t path in the multistage graph model, referred to as the Multistage s-t Path problem. Herein, given a sequence of graphs over the same vertex set but changing edge sets, the task is to find short s-t paths in each graph ("snapshot") such that in the resulting path sequence the consecutive s-t paths are "similar". We measure similarity by the size of the symmetric difference of either the vertex set (vertex-similarity) or the edge set (edge-similarity) of any two consecutive paths. We prove that the two variants of Multistage s-t Path are already NP-hard for an input sequence of only two graphs. Motivated by this fact and natural applications of this scenario e.g. in traffic route planning, we perform a parameterized complexity analysis. Among other results, we prove parameterized hardness (W[1]-hardness) regarding the size of the path sequence (solution size) for both variants, vertex- and edge-similarity. As a novel conceptual contribution, we then modify the multistage model by asking for dissimilar consecutive paths. As one of the main results, we prove that dissimilarity allows for fixed-parameter tractability for the parameter solution size, thereby contrasting our W[1]-hardness proof of the corresponding similarity case.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro