Multimodal Clustering for Community Detection

02/27/2017
by   Dmitry I. Ignatov, et al.
0

Multimodal clustering is an unsupervised technique for mining interesting patterns in n-adic binary relations or n-mode networks. Among different types of such generalized patterns one can find biclusters and formal concepts (maximal bicliques) for 2-mode case, triclusters and triconcepts for 3-mode case, closed n-sets for n-mode case, etc. Object-attribute biclustering (OA-biclustering) for mining large binary datatables (formal contexts or 2-mode networks) arose by the end of the last decade due to intractability of computation problems related to formal concepts; this type of patterns was proposed as a meaningful and scalable approximation of formal concepts. In this paper, our aim is to present recent advance in OA-biclustering and its extensions to mining multi-mode communities in SNA setting. We also discuss connection between clustering coefficients known in SNA community for 1-mode and 2-mode networks and OA-bicluster density, the main quality measure of an OA-bicluster. Our experiments with 2-, 3-, and 4-mode large real-world networks show that this type of patterns is suitable for community detection in multi-mode cases within reasonable time even though the number of corresponding n-cliques is still unknown due to computation difficulties. An interpretation of OA-biclusters for 1-mode networks is provided as well.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro