Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts

11/16/2021
by   Yan Zeng, et al.
8

Most existing methods in vision language pre-training rely on object-centric features extracted through object detection, and make fine-grained alignments between the extracted features and texts. We argue that the use of object detection may not be suitable for vision language pre-training. Instead, we point out that the task should be performed so that the regions of `visual concepts' mentioned in the texts are located in the images, and in the meantime alignments between texts and visual concepts are identified, where the alignments are in multi-granularity. This paper proposes a new method called X-VLM to perform `multi-grained vision language pre-training'. Experimental results show that X-VLM consistently outperforms state-of-the-art methods in many downstream vision language tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro