Movie Box Office Prediction With Self-Supervised and Visually Grounded Pretraining

04/20/2023
by   Qin Chao, et al.
0

Investments in movie production are associated with a high level of risk as movie revenues have long-tailed and bimodal distributions. Accurate prediction of box-office revenue may mitigate the uncertainty and encourage investment. However, learning effective representations for actors, directors, and user-generated content-related keywords remains a challenging open problem. In this work, we investigate the effects of self-supervised pretraining and propose visual grounding of content keywords in objects from movie posters as a pertaining objective. Experiments on a large dataset of 35,794 movies demonstrate significant benefits of self-supervised training and visual grounding. In particular, visual grounding pretraining substantially improves learning on movies with content keywords and achieves 14.5 performance gains compared to a finetuned BERT model with identical architecture.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro