Minimum Bitrate Neuromorphic Encoding for Continuous-Time Gauss-Markov Processes

09/12/2023
by   Travis Cuvelier, et al.
0

In this work, we study minimum data rate tracking of a dynamical system under a neuromorphic event-based sensing paradigm. We begin by bridging the gap between continuous-time (CT) system dynamics and information theory's causal rate distortion theory. We motivate the use of non-singular source codes to quantify bitrates in event-based sampling schemes. This permits an analysis of minimum bitrate event-based tracking using tools already established in the control and information theory literature. We derive novel, nontrivial lower bounds to event-based sensing, and compare the lower bound with the performance of well-known schemes in the established literature.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro