Meta-learning of Pooling Layers for Character Recognition

03/17/2021
by   Takato Otsuzuki, et al.
8

In convolutional neural network-based character recognition, pooling layers play an important role in dimensionality reduction and deformation compensation. However, their kernel shapes and pooling operations are empirically predetermined; typically, a fixed-size square kernel shape and max pooling operation are used. In this paper, we propose a meta-learning framework for pooling layers. As part of our framework, a parameterized pooling layer is proposed in which the kernel shape and pooling operation are trainable using two parameters, thereby allowing flexible pooling of the input data. We also propose a meta-learning algorithm for the parameterized pooling layer, which allows us to acquire a suitable pooling layer across multiple tasks. In the experiment, we applied the proposed meta-learning framework to character recognition tasks. The results demonstrate that a pooling layer that is suitable across character recognition tasks was obtained via meta-learning, and the obtained pooling layer improved the performance of the model in both few-shot character recognition and noisy image recognition tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro